https://ehjournal.biomedcentral.com/articles/10.1186/s12940-017-0248-y
Please refer to the first paragraph of section "Background" and the following excerpt.
"It is generally agreed that in contrast to static magnetic fields, static EF do not enter the body [14]. Based on the physics of field interactions with the body, the static EF within the body from an external source is attenuated by a factor of approximately 10−12 [16]. According to the current knowledge, static EF can cause effects on the body via changes in the distribution of electric charges on the surface of the body."
"As one keeps walking across the floor, one becomes full of electrons"
Reading notes from references [1-3]*
Matter is normally electrically neutral because it consists of atoms which have zero charge, as the positive charge of the nucleus protons is neutralized by the negative charge of the electrons. Upon contact and friction of two materials, it is possible to induce charge separation (i.e. separation of positive and negative charges), flow of electrons from one material to the other and retention of an electron excess on one material versus the other. This phenomenon is known as static electricity. An example is represented by a person walking on a wool carpet with leather shoes. The contact and friction between the carpet and the floor causes a charge separation for each step, during which the shoes pick up extra electrons from the carpet.
The electrons spread on the surface of the body providing a negative charge to it (negative charge surface distribution). In other words, the body is being charged. The amount of charge that an entity can hold at a given voltage determines its capacitance (C=q/V). The capacitance of the human body is approximately 100 pF. The electron/negative charge build up can continue up to a very high voltage of 20.000 to 25.000 volts. This is a considerable value given that an electrical outlet supplies 110 to 240 volts. If the person reaches for a conductive object like a metal door knob, electrons will tend to flow from the body towards the door knob. The electrons due to collisions with the air molecules will generate ions and freed electrons and the air will become conductive as it is transformed to plasma which provides a bright spark.
In order to avoid static electricity, it helps to humidify the air. On humid days, a thin layer of water molecules covers most surfaces and this allows electrons to move freely and not accumulate (charge build up). Wrist straps connected to ground are used by electronic technicians and are recommended for earthing well-being practices. Also manufacturing plants may use ionizers to settle electronic behavior. An ionizer produces negatively charged ions such as O2- and N2- to which particulate air matter attaches.
References*
[1] https://www.livescience.com/4077-shocking-truth-static-electricity.html
[2] https://incompliancemag.com/article/static-electricity-and-people/
[3] https://en.wikipedia.org/wiki/Static_electricity
2. Please refer to three paragraphs following the hightlight at the link http://bit.ly/2nu8OE7 (including excerpt below).
The conditions of exposure at these frequencies in many situations, like power lines, are such that the sources of exposure are very distant to the human body and therefore can be considered uniform [16]. (Another note: http://bit.ly/2QDMmEs)